Operations

Technology

Deep Learning Models of
Scanner/Vision Tunnel
Performance in Sortation

Subsystems

BUSINESS PROBLEM

Scanner/Vision tunnel performance at Amazon's large crossbelt
sorter sites tends to average around 80-90% read rate success,
contributing to a large amount of manual rework and
recirculation impacting sorter utilization. Amazon is well away
from their target of 98% scanner performance for these sites.
Furthermore, the mechanisms to deep-dive scanner issues make
it extremely difficult to categorize no-reads (unsuccessful scans)
into operational or actual equipment issues. As a result, Amazon
has very little visibility as to no-read causes across sites and
cannot properly put together a plan to improve the situation.

DATA SOURCES

We have access to hundreds of thousands of daily images of no-
reads (unsuccessful scans) across most of the North American
fulfilment network. We then manually label over 2300 images
across ten sites in scope for our supervised models. We mostly
use images from large cross-belt sorters, as these are the
sorters handling the most volume and where issues are the most
common.

Data Types and Format

We use grayscale images with a resolution depending on the
scanner settings but most commonly being 2048x1088.

Defect detection / product inspection

Convolutional neural networks

To address the no-read issues we witnessed

across the fulfillment network, we build a
pipeline on AWS to process scanner images.
Then, we develop a deep learning ResNet model

through AWS SageMaker to assign fault reasons

for each image. A user interface finally allows
operations managers to see which sites are
lagging behind, launch deep-dives and test

operational or equipment fixes.

Development Training

Code Repository

|

Local Machine SageMaker Notchook ———

Code is developed on a A SageMaker notebook
processes the data an

sets up 3 pipeline fo

local machine and synced
with a cloud repository.
The code is then pushed ing

to SageMaker and the EC2 Training is performed on a
instance spot GPU instance

Ephémeral GPU Instance

Inference

83 Bucket

EC2

Multi-model endpoint

An ECZ instance retrieves
the local code while an

53 bucket stores data and
models

The EC2 instance runs the
inference code when new

data is added in 53.

IMPACT

Our solution finally allows engineers
and operations managers to
understand the cause of no-reads at
their respective sites and empowers
them to address the issues.
Fulfillment centers can see hundreds
of thousands of packages every day
and finding the root cause of tens of
thousands of no-reads often cannot
be done manually. Each package with
ascanner no-read endsup ina
separate chute, where associates
need to manually determine what has
happened and re-induct the package
on the conveyor belt. As such, no-
reads generate unnecessary manual
labor, heavily impact sorter utilization
and can lead to missed delivery
windows. Despite the subjective
nature of multiple labels, our models
show less than 2% aggregated error
across our validation set and less than
5% error across previously unseen
scanners or sites, effectively correctly
reporting all of the site-specific
trends and issues. We further confirm
the user experience through multiple
pilots and tool demonstrations across
North American sites. A conservative
entitlement is approximately $2.2MM
for the pilot sites in annual savings
excluding customer impact, although
the tool has the potential to save

significantly more if it is actively
adopted across the network. Our tool
also further opens the doorto a
variety of other initiatives. Ultimately,
the pipeline we deploy can be used for
other purposes such as damage
detection or sorter analytics.

ACTIONS

INNOVATION

¢

IMPROVEMENT

(=

BEST PRACTICES

»

OTHER APPLICATIONS

n
=

With the rise of one and two day guaranteed deliveries, fulfillment centers are under
increasing pressure to meet their targets and reduce operational issues. Given the
recent improvements in computer vision models and their deployment over the
cloud, there are now countless opportunities to leverage deep learning to
automatically gather insights and act on supply chain faults at scale.

There are two main challenges with this project. First, the data collection can be
much harder for certain sites and the format of images can greatly vary depending
on the scanner vendors or the type of site. Second, some of our classifications are
inherently subjective, such as determining if a package is centered, which creates
uncertainty for machine learning models.

Amazon's fast-pace environment was critical to achieve all of this in such a short
timeframe. Blockers were promptly addressed and we were able to focus on
activities delivering value. There is also a great amount of expertise and support on
both the operational and technical side available for such initiatives.

We first visited multiple sites to have a good understanding of the scanner issues
they face. Then, we implemented the end-to-end deep learning tool while seeking
constant feedback from our end-users. Once the tool was ready, we piloted it across
a few sites to analyze its efficiency and perform final tweaks. Finally, we wrote
detailed technical documents and an internal press release to launch it across the
network.

While the algorithms we used are well-known to deep learning experts, they had yet
to be used in the context of fault classification at Amazon. Furthermore, we leverage
the red and blue channels of our grayscale images to contain additional statistical
processing rather than repeat the gray intensity. This novel technique greatly
improved our accuracy for certain models.

The cost of missed deliveries in fulfilment centers, of which no-reads are a major
cause, is estimated to be between $20M and $60M annually. In addition, rough
estimates of the cost of no-reads for a single inbound cross dock in our pilot are
over $9M annually. While time will tell how much of this cost will be reduced through
the use of the tool, our conservative estimate of the annual savings is around $2.2M.

Anyone replicating this process should carefully design a scalable and flexible
pipeline. Such a tool requires several iterations of datasets, models and processing
and it is critical to take the time to design the end-to-end process robustly before
jumping into the deep learning component. Then, we need to give great care in
determining when a model is good enough. Several great models can often deliver
more value than single exceptional one.

A major component of this thesis relates to the use of AWS SageMaker to build and
deploy machine learning models. Most of the architecture we describe could easily
be adjusted for a variety of contexts such as product tracking, manufacturing defect
detection or forecasting. Furthermore, the architecture we built at Amazon could be
used for other applications such as package damage detection with only very minor
changes.

